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Abstract
The effect of an S1 = 1 regular dilution in an S2 = 1/2 isotropic
antiferromagnetic chain is investigated with quantum Monte Carlo simulations.
Our numerical results show that there exist two kinds of ground state phases
with different variations of the S1 = 1 concentration. When the effective spin
in a unit cell is half-integer, the ground state is ferromagnetic with a gapless
energy spectrum, and the magnetism is continuously weakened as the spin S1

concentration ρ decreases. When the effective spin in a unit cell is integer,
however, a non-magnetic ground state with a gapped energy spectrum emerges,
and the gap decays gradually, with � ≈ 1.25

√
ρ.

1. Introduction

The substitution of magnetic impurities in the antiferromagnetic (AF) spin chain has attracted
great interest in the past decade. It is theoretically observed that the ground state properties
vary with different dilutions. When the substitution is random, the most interesting case is
the Haldane chain [1] with S = 1/2 impurities. For example, experiments involving inelastic
neutron scattering on the compound Y2BaNiO5 substituting Ca2+ for Ni2+ [2] show a substantial
increase of the spectral function below the Haldane gap, indicating the creation of states below
the energy of the spin gap. This effect has been studied numerically by Wessel and Haas [3].

For regular substitutions, the system can be described as a mixed-spin chain, this topic
has been focused on in the past few years [4, 5]. Analytical approaches to this subject include
those of the non-linear sigma model, the mean field theory, and the spin-wave method [6–9].
Numerically, density matrix renormalization group [10] and quantum Monte Carlo (MC)
methods [11, 12] have also been extensively applied. It is already well known that the topology
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of spin arrangements in the mixed-spin chains plays an essential role in the ground state
properties and thermodynamics of the mixed-spin systems.

Many quasi-one-dimensional mixed-spin materials have been synthesized in the past two
decades, such as ACu(pba)(H2O)3·n(H2O) and ACu(pbaOH)(H2O)3·nH2O (where pba = 1,3-
propylenebis(oxamato), pbaOH = 2-hydroxo-1,3-propylenebis, and A = Ni, Fe, Co, Mn, Zn).
These materials contain two kinds of transition metal ions in a unit cell; their properties
can be characterized with ferromagnetic chains [13–16], and the magnetic properties of such
mixed-spin compounds can be described by a Heisenberg model with the nearest-neighbour
antiferromagnetic (AF) couplings:

H =
N∑

i=1

Ji Si · Si+1, (1)

where Si denotes a spin-S magnet at site i , N is the system size, and the coupling constant
Ji > 0. Fukui and Kawakami [6] have studied an extension of this system, i.e., a periodic
array of S1 impurities embedded in the host S2 �= S1 chain with a period K :

S1 ⊗ S2 ⊗ S2 ⊗ · · · ⊗ S2
︸ ︷︷ ︸

K

⊗S1 ⊗ S2 ⊗ · · · ⊗ S2. (2)

There are two dilution limits of the model, denoted by the impurity concentration
ρ = 1/K : (i) ρ = 0, the undoped pure AF chain with a non-magnetic ground state;
(ii) ρ = 0.5, the alternating array of S1–S2 chains. According to the Marshall theorem and the
Lieb–Schultz–Mattis (LSM) theorem [17], the ground state of generally doped systems can
be specified by a spin quantum number S = 0(|S1 − S2|N/K ) for the K = odd (even) case
and it is a spin singlet (ferrimagnetic). If the effective spin Seff in a K -spin cell is half-integer,
the system has a gapless energy spectrum. If Seff is integer, the LSM theorem fails to predict
whether the energy spectrum is gapped or gapless. In a theoretical study based on the non-
linear σ model, an energy gap is reported [6, 7]. However, details of ground state properties
and thermodynamics are not provided in such an analysis.

Recently, the authors of the present paper have been engaged with the model for S1 = 1/2
and S2 = 1 with the quantum loop/cluster algorithm [18, 21]. Numerical results reveal non-
trivial magnetic properties for two kinds of regular dilutions. For even K , i.e., an odd number
of S2 = 1 spins in a unit cell, the system has a magnetic ground state and shows ferromagnetic
features, while for odd K , the system enters a non-magnetic ground state with AF-like character.
For both cases, the ground states are all gapless. The doped system gradually turns from the
ferrimagnetic ground state of the alternating S1–S2 chain to the disordered ground state of a
pure spin-1 AF chain, following two tendencies with decreasing impurity concentrations.

In this paper, we will study the opposite case, S1 = 1 and S2 = 1/2. Previous analytical
work predicted that if there an odd number of S2 = 1/2 spins in a cell, i.e., Seff is half-integer,
the ground state is ferrimagnetic with a gapless energy spectrum, while if there are an even
number of S2 = 1/2 spins in the cell, i.e., Seff is integer, the ground state is non-magnetic
and the system keeps its energy gap. Our study will focus on how the ground state properties
depend on the S1 = 1 concentration ρ and how the magnetic properties at finite temperatures
change as ρ decreases.

2. Calculation and results

We perform the MC simulation with the efficient continuous imaginary time version of the
loop cluster algorithm [20]. The algorithm has been successfully applied to other mixed-spin
chains [18, 21]. The reliability and accuracy of the algorithm have been numerically verified in
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calculations of the ground state energy, the energy gap, and the uniform magnetic susceptibility
for different models, including the pure spin S = 1 chain, and the alternating 1– 1

2 and 1– 3
2

mixed-spin chains. Within acceptable numerical errors [22], the results obtained are consistent
with the analytical calculations [12] and other numerical results obtained with density matrix
renormalization group methods and quantum MC simulations [10, 12, 19, 23]. Thus we believe
that the current MC simulation is also efficient and credible for the model investigated in this
paper.

We confine our study to the case of homogeneous AF couplings (Ji = J > 0), and the
positions of the spin S1 = 1/2 and S2 = 1 are arranged according to equation (2) for K
ranging from 2 to 11. After 103 MC time steps for thermalization, 105 MC time steps are
carried out for calculating physical quantities. In order to clarify the ground state properties,
the simulations are performed at a very low temperature, β = 1/T = 200, for system sizes
of L ∼ 200 under the condition of an even number of unit cells in the chain. The measured
physical quantities are the ground state energy EG, the uniform magnetic susceptibility χu,
and the staggered susceptibility χs, using improved estimators in the loop cluster algorithm:

〈χ〉 = β

4V

〈 ∑

cluster c

wt(c)
2

〉

MC
, (3)

〈χs〉 = 1

4Vβ

〈 ∑

cluster c

|C|2
〉

MC

, (4)

where w(c) is the winding number of a cluster c and |C| is the cluster size. The magnetization
and staggered magnetization are defined by

〈M2〉 =
〈
3

(∑

i

Sz
i

)2〉

MC

(5)

and

〈M2
s 〉 =

〈
3

(∑

i

(−1)i Sz
i

)2〉

MC
, (6)

respectively, and the energy gap � is estimated in the same way as given by Todo and Kato [23]:

� = lim
L→∞

1

ξτ,0(L)
, (7)

where ξτ,0 is the correlation length in the imaginary time direction.
The results for the magnetization and uniform susceptibility are plotted in figures 1 and 2.

The size of the error bars is less than that of the symbols in all figures in this paper. Obviously,
the magnetic properties for K = odd and K = even cases are different. For K = even,
the magnetization is finite and approaches zero linearly as ρ decreases. For K = odd, the
magnetization remains zero. On the other hand, the uniform susceptibility χu retains finite
values for K = even, but vanishes for K = odd. Thus the ground state is ferrimagnetic for
K = even, but non-magnetic for K = odd.

Next, we measured the staggered magnetization and staggered susceptibility; their
dependences on the concentration ρ are shown in figures 3 and 4 respectively. Both quantities
are finite for the K = odd and K = even cases. However, the values for K = even are much
bigger than those for K = odd.

In order to confirm the above results, we further investigate the uniform magnetic
susceptibility at finite temperatures. As displayed in figure 5, for K = even one can easily see
that χu diverges when the temperature T = 1/β goes to zero, and this is a typical behaviour
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Figure 1. The magnetization versus the dilution concentration ρ = 1/K for β = 200 and L ∼ 200.
The filled squares present data for K = even and the empty squares, data for K = odd.
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Figure 2. The magnetic susceptibility versus ρ = 1/K for β = 200 and L ∼ 200. The filled
diamonds present data for K = even and the empty diamonds, data for K = odd.

of a magnetic system. In the K = odd case, χu approaches zero when T → 0. We fit the
result for χu versus T for the K = 3 case (the 1– 1

2 – 1
2 mixed-spin chain) with the activated

behaviour χu ∼ e−�/T and obtain � ∼ 0.57. This result is consistent with that obtained from
equation (7), and serves as remarkable evidence for the existence of the energy gap.

Up to now, we have numerically verified that the ground state of K = even shows both
ferromagnetic and antiferromagnetic features, and the system is located in the ferrimagnetic
phase, while for the K = odd case, the system should be located in the spin liquid phase
characterized by a vanishing magnetization. Consequently we believe that our numerical
calculations are correct since they are consistent with previous analytical analysis. More
importantly, it can be easily found from figures 1–4 that the magnetism for K = even is
weakened as the impurity concentration ρ decreases. However, no significant dependence of
the magnetic properties on ρ is detected for K = odd.

In addition, we consider the features of the energy gap � for different regular dilutions.
Unsurprisingly, the energy gap is closed when K = even and it opens again if K = odd, as
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Figure 3. The staggered magnetization versus ρ = 1/K for β = 200 and L ∼ 200. The filled
triangles present data for K = even and the empty ones, data for K = odd.
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Figure 4. The staggered susceptibility versus ρ = 1/K for β = 200 and L ∼ 200. The filled
triangles present data for K = even and the empty ones, data for K = odd.

shown in figure 6. The calculations are consistent with the prediction drawn from the non-
linear σ model and the LSM theorem [6, 7]. It is interesting to note that the energy gap � for
K = odd tends to narrow as the S1 = 1 concentration decreases. We confirm the behaviour
by fitting � to the curve for 1.25

√
ρ in figure 6.

Moreover, we hope to show the finite-size effect of �. Although the gap is not exactly
closed for K = even due to the finite-size simulations, as shown in figure 7 the gap decays
following a 1/L power law, and this indicates that the gap will tend to close as L → ∞. For
all the K = odd cases, the gap opens stably and almost no finite-size effect is observed.

In order to identify the ground state phases, we perform a calculation of the valence bond
solid (VBS) [24] order parameter

z ≡
〈
exp

[
i
2π

L

L∑

j=1

j Sz
j

]〉
. (8)

According to the LSM theorem, z vanishes in the gapless phase as the system size L → ∞.
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Figure 5. The uniform magnetic susceptibility χu versus temperature for size L ∼ 200. The empty
symbols are for K = even and the filled ones, for K = odd. For comparison, the stars present data
for the pure S2 = 1/2 AF Heisenberg chain.
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Figure 6. The energy gap versus the diluting parameter ρ = 1/K at β = 200. The filled circles
present data for K = odd and the empty ones, data for K = even. The dashed lines only guide the
eyes and the solid line is the fitted curve for � = 1.25

√
ρ − 0.1 with the coefficient of correlation

of the curve to the filled circles being 0.999.

On the other hand, one expects z to vary between −1 and +1 in a given gapped phase. For
exact VBS states, z = ±1 [25]. Our results are plotted in figure 8. It is clear that z ≈ −1 for
K = odd, indicating that the system is located in a VBS phase, while z ≈ 0, revealing the
gapless energy spectrum, for K = even.

In particular, all these ground state phases can be understood with the scenario of the VBS
picture: each impurity S1 = 1 can be regarded as two 1

2 spins in a triplet state and each of the
two 1

2 spins can form a singlet with their nearest-neighbour 1
2 spins due to the AF coupling.

When K = odd, each unit cell has an even number of S2 = 1
2 host spins, and they can fall

into singlets with their nearest neighbours including the two 1
2 spins with S1 = 1 to induce the

VBS order shown in figure 9(a). As a result, the system now shows a gapped energy spectrum.
But for the case K = even, there are an odd number of S2 = 1

2 spins in each unit cell; an
active spin which is not used to form a singlet appears, as shown in figure 9(b). Thus there is
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Figure 7. Finite-size effects of the energy gap calculated at β = 200. The two upper lines of
filled symbols present data for K = odd, with the left side y-axis, and the empty symbols, data for
K = even, with the right side y-axis.
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Figure 8. The VBS order parameter z versus the S1 = 1 concentration ρ1/K for β = 200 and
L ∼ 200. The filled triangles present data for K = odd and the empty ones, data for K = even.

no VBS order and the spin gap does not emerge. Our results for the VBS order parameter z
clearly verify this picture, in figure 8: z ≈ −1 (0) when K = odd (even). Finally, we note
that the VBS phase is stable against the S1 = 1 concentration ρ for K = odd.

3. Discussion and conclusion

Our Monte Carlo simulations confirm that two branches of magnetic states emerge in regular
S1 = 1 dilution in S2 = 1/2 host chains. According to the Marshall theorem, the mixed-
spin chain with K = even has a ferromagnetic ground state which can be specified by a
quantum number Stotal = |S1 − S2|N/K . It is readily observed in figures 1 and 3 that the
magnetization per site is finite and decreases linearly to zero as ρ approaches zero, The limit
ρ = 0 corresponds to the pure S = 1

2 AF Heisenberg chain with M = 0. For the mixed-spin
chain with K = odd, the ground state is a singlet with Stotal = 0; thus the magnetization per
site stays at zero, indicating the non-magnetic behaviour.
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(a)

(b)

Figure 9. Illustrations of the VBS picture. The dashed ellipses represent S1 = 1, the filled circles
are for S2 = 1/2, and the empty circles are for the active 1

2 spins; (a) for K = odd and (b) for
K = even.

Table 1. Comparison of ground state properties of system I and II. Seff denotes the effective spin
in a cell, 〈M〉 (〈Ms〉) is the uniform (staggered) magnetization, χu (χs) is the uniform (staggered)
susceptibility, � is the energy gap, and z is the VBS order parameter.

I: S1 = 1, S2 = 1/2 II: S1 = 1/2, S2 = 1

K = odd K = even K = odd K = even

Seff Integer Half-integer Half-integer Half-integer
〈M〉 Zero Finite Zero Finite
χu Zero Large Small Large
〈Ms〉 Finite Finite Finite Finite
χs Small Large Large Large
� Gapped Gapless Gapless Gapless
z −1.0 0.0 0.0 0.0

To compare the ground state for S1 = 1 and S2 = 1/2 (system I) reported in this paper
with that for S1 = 1/2 and S2 = 1 (system II) in a previous study [18], we collect the main
results of the numerical simulations in table 1. One can see that both systems show two
different ground state phases, magnetic and non-magnetic. For K = even, the ground state
is ferromagnetic for both system I and II, and the magnetization and staggered magnetization
are finite and decrease linearly as the impurity concentration ρ approaches zero. However, for
the case with K = odd, the VBS order phase appears in system I which has a gapped energy
spectrum, but the VBS order is not observed in system II, and the gap vanishes since the spin
arrangements cannot induce such an order. These features indicate that the topological order
is crucial for the energy gap in the mixed-spin chains. We believe that the fitted relation of the
energy gap as a function of the S1 = 1 spin concentration, � ≈ 1.25

√
ρ, provides a way to

study how the topological order affects the energy gap in such systems.
In conclusion, we have studied the ground state and thermodynamic properties of an

S1 = 1 regular dilution in an S2 = 1/2 isotropic antiferromagnetic chain. Our calculations
show that there exist different phases in the ground state with respect to the S1 concentration
ρ. When a unit cell of the mixed-spin chain consists of an S1 impurity and an odd number
of host S2 spins, the ground state is ferromagnetic with a gapless energy spectrum, and the
ferromagnetism is gradually weakened as the impurity concentration decreases. When a unit
cell consists of an S1 spin and an even number of S2 spins, the ground state is the VBS phase,
there is a gapped energy spectrum, and the gap gradually approaches zero as ρ decreases. It
is interesting that the energy gap can be numerically fitted as � ≈ 1.25

√
ρ, and this requires

further understanding.
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